Journal of Organometallic Chemistry, 164 (1979) 135–139 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

INTRAMOLECULAR MOBILITY OF PENTACOORDINATED TIN COMPOUNDS

C. MÜGGE, K. JURKSCHAT, A. TZSCHACH and A. ZSCHUNKE Department of Chemistry, Martin-Luther-University Halle-Wittenberg (G.D.R.) (Received July 5th, 1978)

Summary

The ¹H and ¹³C NMR data for some *N*-methyl-5,5-dialkyldiptychthiaazstannolidines are reported. The differing coupling constants of the proton signals of the two nonequivalent Sn-alkyl groups suggest apical/equatorial positions for these groups at the pentacoordinated tin atom. The observed intramolecular process is explained by a dissociation-inversion mechanism.

In previous papers [1,2] we proposed a structure for *N*-alkyl-5,5-di-t-butyldiptychoxazstannolidines in which there is an approximate bipyramidal arrangement of the ligands around the tin atom. The electronegative oxygen atoms must lie in the apical positions [3], and the t-butyl group and N atoms in equatorial positions (structure A, X = O). The temperature dependence of the ¹H, ¹³C and ¹¹⁹Sn spectra of that compound is explicable in terms of a dissociation—inversion mechanism [1,2,4]. An alternative structure B (X = S) must be

considered in the case of *N*-methyl-5,5-dialkyldiptychthiaazstannolidines I–III (I, X = S, R = R' = Me; II, X = S, R = R' = t-Bu; III, X = S, R = Me, R' = t-Bu).

The ¹H NMR spectrum (see Table 1) of I at -20° C displays two Sn-methyl signals (a and b) of equal intensity but only one N-methyl signal. At +41°C the two Sn-methyl signals coalesce. In the ¹H NMR spectrum of II the two t-Bu signals (a and b) coalesce at -49° C. The ¹H NMR spectrum of III shows no temperature dependence.

The ¹³C NMR spectra exhibit similar behaviour (see Table 2). At low temperature in the spectra of I and II only the ¹³C signals of the Sn-alkyl groups are split, the SCH₂, NCH₂ and NCH₃ signals remaining unchanged.

For reasons previously discussed a dissociation-inversion suggested to be the process whereby both methyl groups in I (or t-butyl groups in II) become equivalent.

For I and II both conformers (α and β) are equivalent; for III, however, one conformer dominates to such a degree that only one signal appears for each Sn-alkyl group even at low temperature.

In the *N*-alkyl-5,5-di-t-butyldiptychoxaazstannolidines the two Sn-alkyl signals, which appear at low temperature have almost the same coupling-constants ${}^{3}J({}^{119}Sn-C-C-{}^{-1}H)$ and ${}^{3}J({}^{117}Sn-C-C-{}^{-1}H)$. The ¹H NMR spectrum of II, however, gives a different value for the coupling constants ${}^{3}J({}^{119}Sn-C-C-{}^{-1}H)$ and ${}^{3}J({}^{117}Sn-C-{}^{-1}H)$ for both Sn-alkyl signals (see Table 3). The coupling constants ${}^{2}J({}^{119}Sn-C-{}^{-1}H)$, ${}^{2}J({}^{117}Sn-C-{}^{-1}H)$, ${}^{1}J({}^{119}Sn-{}^{13}C)$ and ${}^{1}J({}^{117}Sn-{}^{13}C)$ of the two methyl signals in I also differ considerably. Signal a: ${}^{1}J({}^{119}Sn-{}^{13}C)$ 472.2 Hz, ${}^{1}J({}^{117}Sn-{}^{13}C)$ 452 Hz; signal b: ${}^{1}J({}^{119}Sn-{}^{13}C)$ 341 Hz, ${}^{1}J({}^{117}Sn-{}^{13}C)$ 326 Hz at -20° C, solvent: CDCl₃.

TABLE :	1
---------	---

¹H NMR CHEMICAL SHIFTS δ (ppm) OF I, II AND III

Com- pound	Sn-CH ₃		SnC	-СН3	N-CH3	Tempera- ture (°C)	Solvent
	(a)	(b)	(a)	(b)			
г .	0.65	0.02			·* 2.13	-70	CH ₂ Cl ₂
	0.66	0.06			2.16	-26	CH ₂ Cl ₂
	0.71	0.20			2.21	-10	CDCI3
	9.	47			2.25	+60	CDCl3
	0.29	0.37			1.83	-26	(CD ₃₎₂ CO
	0.62	0.25			2.05	3	o-DCB ^a
	0.	5			2.10	+97	o-DCB
I			1.21	1.13	2.16	-72	CH ₂ Cl ₂
			1.	30	2.20	+34	CH ₂ Cl ₂
			0.97	0.89	1.94	-72	(CD ₃) ₂ CO
			1.	13	2.11	+34	(CD ₃) ₂ CO
III	0.55		0.	93	2.16	-60	CH ₂ Cl ₂
	0.62		1.	04	2.20	+34	CH2Cl2

^a o-DCB = o-dichlorobenzene, conc. ca. 1 M.

Com- pound	Sn—	<u>CH3</u>	Sn-CCH3	$Sn-\underline{C}-CH_3$	$S-\underline{C}H_2$	$N-\underline{C}H_2$	N-CH3	Tempera- ture (°C)
	(a)	(b)						
I	4.4	2.7			23.7	58.4	42.7	20
	2	.5			23.7	58.4	42.7	+40
11			30.1	37.4	23.1	59.1	41.2	-30
111	2	.6	28.9	33.3	23.4	58.5	43.0	+40

¹³C NMR CHEMICAL SHIFTS δ(ppm) OF I. II AND III

^a Solvent-CDCl₃, conc. ca. 1 M.

TABLE 2

These facts suggest apical/equatorial positions for the Sn-alkyl groups at the pentacoordinated tin atom (see structure B).

The small difference between the electron gativities of sulfur and carbon would favour similar stabilities for structures A and B. Because these two structures never appear as conformers in the low-temperature spectrum we believe the partial Berry process [5,6] between A and B to be fast on the NMR time scale even at the lowest accessible temperatures. In I, II and III structure B must dominate in the equilibrium. An alternative explanation, involving an intermediate structure between A and B, cannot be excluded [7].

The difference in the free activation enthalpies for I and II demonstrates that in comparison with the methyl group the t-butyl group weakens the Sn—N bond, both electronic and steric factors being responsible for this.

Experimental

All reactions were carried out under dry oxygen-free argon. The solvents were purified by standard methods. *N*-Methyl-bis(β -mercaptoethylamine) was made as previously described [8].

The N-methyl-5,5-dialkyldiptychthiaazstannolidines was prepared by a method as previously described for the N-alkyl-5,5-dialkyldiptychoxazstannolidines [1,2]. The ¹H NMR spectra (100 MHz) were recorded on a Varian-HA-100 spectrometer; proton-decoupled ¹³C NMR spectra were recorded on a Brunker HX-90Espectrometer.

N-Methyl-5,5-dimethyldiptychthiaazstannolidine (I). Dimethyltin oxide (5.8 g 0.035 mol), *N*-methyl-bis(β -mercaptoethylamine) (0.035 mol, 5.28 g) and a catalytic amount of potassium hydroxide in 125 ml of xylene yield, after recrystallisation from benzene/n-pentane, 9.85 g (94%) of *N*-methyl-5,5-dimethyl-diptychthiaazstannolidine (m.p. 66° C). (Anal.: Found: C, 28.14; H, 5.77; N, 4.62; Sn, 39.51. C₁₇H₁₇NS₂Sn calcd.: C, 28.22; H, 5.71; N, 4.70; Sn, 39.87%).

N-Methyl-5,5-di-t-butyldiptychthiaazstannolidine (II). Di-t-butyltin oxide (10 g, 0.04 mol), *N*-methyl-bis- β -mercaptoethylamine (6.079, 0.04 mol), and a catalytic amount of potassium hydroxide in 150 ml of xylene gave, after evaporation of the solvent and distillation, 14.5 g (94.5%) of *N*-methyl-5,5-di-t-butyl-diptychthiaazstannolidine (b.p. 152°C/0.8 mmHg; m.p. 38°C). (Anal.: Found: C,

	הינואפ כ) r sinvisno:	HZ) LOK I							
Compound	21(1135	3nC ¹ H)	27(117	SnC- ¹ H)	3,112,	SnCC ¹ H)	3J(117	SnCCIH)	Temperature	Solvent
	(u)	(p)	(a)	(p)	(a)	(b)	(a)	(q)	6	
I	64	49	61	45			-		26	CH2Cl3
	64	49	61	45					26	cDCl ₃
	64	48.5	61	46					26	(CD3)2CO
	. 64	48.5	61	46					26	Pyrd5
	64	48.5	61	46					26	o-DCB
	5(5.5	ß	4					+97	0-DCB
11					101	91	97	87	-72	CH2Cl2
						06	8	.0	+34	CH2Cl2
					100	89	96	85	-72	(CD3)2CO
					3	39	8	10	+34	(CD ₃)2CO
III	52		50		~	38	ò	Ŧ	09-	CH2Cl2
	52		50		æ	36	ò		+34	CH2Cl2
	52		50		ω	37.5	8	3.5	+34	DMSO
	52.5		50		~	38	à	-	+34	Pyrd5
<i>a</i> o-DCB = o-d	lichlorober	1zene, conc.: ca	. 1 <i>M</i> .			- Maria - Andrea - Angres - An				

-

TABLE 3 PROTON COUPLING CONSTANTS J (Hz) FOR I, II

Compound	Т _с (°С)	G [*] _{Tc}	н*	Ea	Solvent
I	41.0	65.3	61.1 (± 4.0)	63.2 (± 4.0)	CDCl ₃
	40.5	65.7	64.0 (± 2.0)	66.5 (± 2.0)	Pyrd ₅
II	49.4	48.5	44.8 (± 4.5)	46.9 (± 4.5)	CH ₂ Cl ₂
	49.5	48.5	56.5 (±10.5)	58.2 (±10.5)	(CD ₃) ₂ CO

 TABLE 4

 ACTIVATION PARAMETERS ^a (kJ/mol) OF I AND II

 ${}^{a}T_{c}$ coalescence temperature; G^{*} free activation enthalpie; H^{*} activation enthalpie; E_{a} Arrhenius activation energy.

40.81; H, 17.72; N, 3.60; Sn, 30.92. C₁₃H₂₉NS₂Sn calcd.: C, 40.87; H, 17.60; N, 3.66; Sn, 31.10%).

N-Methyl-5-methyl-5-t-butyldiptychthiaazstannolidine (III). Methyl-t-butyltin oxide (3.7 g, 0.0179 mol), *N*-methyl-bis(β -mercaptoethylamine) (2.7, 0.0179 mol), and a catalytic amount of potassium hydroxide in 100 ml of xylene gave after recrystallisation from benzene/pentane, 5.5 g (90.5%) of *N*-methyl-5-methyl-5-t-butyldiptychthiaazstannolidine, m.p. 94–95°C. (Anal.: Found: C, 35.32; H, 6.55; N, 4.07; Sn, 34.75. C₁₀H₂₃NS₂Sn calcd.: C, 35.32; H, 6.77; N, 4.12; Sn, 34.94%).

All the products are soluble in common organic solvents such as benzene, chloroform, acetone, and pyridine.

References

- 1 A. Zschunke, A. Tzschach and K. Jurkschat, J. Organometal. Chem., 112 (1976) 273.
- 2 K. Jurkschat, C. Mügge, A. Tzschach, A. Zschunke, M.F. Lann, V.A. Pestunovich and M.G. Voronkov, J. Organometal. Chem., 139 (1977) 279.
- 3 G. van Koten, J.G. Noltes and A.L. Spek, J. Organometal. Chem., 118 (1976) 183.
- 4 G. van Koten and J.G. Noltes, J. Amer. Chem. Soc., 98 (1976) 5393.
- 5 G. Nasielski, Usp. Khimi., 41 (1972) 1229.
- 6 M. Gielen and H. Mokhatar-Jamai, J. Organometal. Chem., 129 (1977) 325.
- 7 E.L. Muetterties and L.J. Guggenberger, J. Amer. Chem. Soc., 96 (1974) 1748.
- 8 J. Harley-Mason, J. Chem. Soc., (1947) 320.